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Summary  

A numerical investigation is made of the two-dimensional steady, irrotational flow of a jet of water falling under 
the influence of gravity, from a channel with an upper wall. This non-linear problem is formulated as an 
integro-differential equation for the two free surfaces of the jet, via a hodograph transformation, and this 
equation is then discretized to yield a finite set of non-linear equations which are solved numerically by Newton's 
method. Physically meaningful solutions are found to exist only for Froude numbers F greater than or equal to a 
certain critical value F0, which is to be determined. Results are presented, both for F > F o where the detachment 
is with continuous slope and for F = F 0, where the upper detachment point is a stagnation point at a 120 ° 
corner. 

1. Introduction 

Numer i ca l  so lu t ions  for  thick waterfa l ls  have been  ob t a ined  by  Chow and  H a n  [1] using a 
f ini te  d i f ference scheme and  by  Smith  and  A b d - e l - M a l e k  [4] via in tegra l  equa t ions  der ived  
b y  Hi lbe r t ' s  method .  In tegra l  equa t ions  were also employed  by  Vanden-Broeck  and Kel ler  
[6] for a free jet .  This  la t te r  a p p r o a c h  is again cal led upon  in this s tudy,  to p rov ide  fur ther  
resul ts  for  a genera l i sa t ion  of  the waterfa l l  p r o b l e m  to al low for an uppe r  ups t r eam 
bounda ry .  

Specif ical ly,  we assume that  there  is an  inc ident  un i fo rm s t ream U, in i t ia l ly  b o u n d e d  by  
two hor izonta l  walls  of  wid th  w apar t ,  the ends  of  which are in general  offset  f rom each 
other.  In  the l imit  as the end of  the top  wall  is moved  a large d i s tance  ups t r eam of  the end 
of  the b o t t o m  wall, the classical  waterfa l l  p r o b l e m  is recovered.  Of  pa r t i cu l a r  in teres t  is 
when  we have zero offset,  which is equivalent  to efflux f rom a s t ra ight  nozzle.  

I t  is convenien t  to pa rame te r i ze  the p r o b l e m  by  the F r o u d e  n u m b e r  F = U / f ~ ,  and,  
in pr inciple ,  this and  the above -men t ioned  previous  s tudies  are  i n t ended  to p rov ide  
solu t ions  for  a rb i t r a ry  inpu t  F values.  The  complex i ty  of  the c o m p u t a t i o n a l  task  is such 
tha t  on ly  one  or  two special  values of  F have been  solved for in the past ,  bu t  we p rov ide  a 
large col lect ion of  so lu t ions  here. In  add i t i on  to the numer ica l  work  at  f inite F,  there  is a 
subs tan t ia l  b o d y  of  l i te ra ture  (e.g. Clarke  [2], Tuck [5], Gee r  and  Kel ler  [3]) on thin 
waterfal ls  or  free je ts ,  i.e. on the a sympto t i c  l imit  as F tends  to inf ini ty.  

In  the presen t  case, at  any  f ixed nozzle geomet ry  wi th  f inite offset,  phys ica l ly  real is t ic  
so lu t ions  can on ly  be found  for  F > / F  0, where  F 0 is de t e rmined  here. This  means  that  if  
we decrease  F f rom infini ty,  so a l lowing the j e t  to become  thicker  and  thicker,  no  solut ion 

341 



342 

exists below a critical Froude  number  F 0. This threshold value is dependent  on the nozzle 
offset, and, for example, when the offset is zero, F 0 = 0.551. Solutions for F > F 0 have the 
proper ty  that  the free steamlines detach smoothly and horizontally f rom the walls. 
However,  as F tends to F 0, a stagnation point  develops at the upper  detachment  point, at 
which the free streamline makes an angle of  120 ° with the upper  wall, i.e. descends at 60 ° 
to the horizontal  initially. 

2. Mathematical formulation 

The flow of interest is sketched in Figure 1, in a non-dimensional  coordinate  system such 
that at upstream infinity there is a uniform stream of  unit magnitude,  in a horizontal 
channel  of  unit width. That  channel  ends near x = 0, and the resulting stream of water 
then falls forever under  gravity. The walls of  the channel need not  end at the same value 
of  x. We let the upper  and lower walls end at (1, 0) and (0, - 1 )  respectively, where / is the 
amount  of  overhang relative to the slot width, which may  be positive as in Figure 1, or 
negative, or zero. 
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Figure 1. Problem definition and conformal-mapping sketches. 
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In terms of a stream function ~k, the upper streamline is taken as ~k = 0, and the lower 
as + = - 1. Wherever these streamlines are free, namely x > 1 for the upper and x > 0 for 
the lower, the pressure must be atmospheric, a condition which, when coupled with 
Bernoulli's equation, yields the non-dimensional equation 

y F - 2  + ½q2 = constant, {2.1) 

where q is the flow speed. 
We choose to seek an analytical function z = z ( f ) ,  where z = x + iy  and f =  ~ + i~k is 

a complex velocity potential. The strip - 1  < ~k < 0 in the f-plane can be mapped 
conformally to the lower half f-plane, where 

f = 1 - e -'~j (2.2) 

as is indicated in Figure 1, and f = ~ + i T /  will be used here as the fundamental 
independent variable. As dependent variable, it is convenient to work with the logarithmic 
hodograph variable 

~2 = "r - iO = log(d  f / d z  ) (2.3) 

noting that ~- = log q, and 0 measures the angle of inclination between a streamline and 
the x-axis. The free-surface condition (2.1) can be differentiated with respect to q, or ~ on 

= 0 to give 

3,r 0"1" F _ 2  r r ( 1 - ~ ) e  -~-~+ s i n 0 = 0 ,  0 < ~ < L .  (2.4) 

The edges of the channel are chosen as ~ = 0 and ~ = L; for any given values of the (real 
positive) parameters F and L, the actual offset l will be determined by the solution. 

In view of the fact that f~ = P.(f) is analytic in the lower half f-plane, tends to zero as 
I l l - '  oo, and possesses only integrable singularities, use of Cauchy's theorem shows that, 
on the real axis f - - ~ -  i0, its real and imaginary parts are Hilbert transforms of each 
other. Specifically, we have 

1 LO( ) d 
r(f) =gfo (2.5) 

when f is real, the integral being of principal-value type if 0 < f < L. In obtaining (2.5) 
from Cauchy's theorem, we have used the fact that 0 = 0 on the horizontal walls of the 
channel, i.e. for ~ < 0 and ~ > L. 

If  ~- is eliminated between (2.4) and (2.5), there results a non-linear integro-differential 
equation for the unknown function 0(~), 0 < ~ < L, and our computational effort is 
reduced to solving that equation with the 0 values as our fundamental  unknowns. Once 
0(4) and hence r (~)  is determined, the actual free-surface profile follows by integration of 
(2.3), i.e. by evaluating the integrals 

c o s  0 ( 4 )  d ~ 
x ( f ) - l = f 0 ~ e - ' ~ ) v r ( l ~ - f f  (2.6) 
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and 

=/ ,~ e_,< o sin 0 ( 4 )  
Y(~) d~, 

So ~r(1 - } )  
(2.7) 

with 1 finally determined by setting x ( L )  = O. 
There is a difficulty with the above formulation, exemplified by the fact that the trivial 

uniform flow 0(4) = ~'(~) --- 0 appears to satisfy (2.4) and (2.5). In fact, because of the loss 
upon differentiation of the constant on the right-hand side of (2.1), the system (2.4), (2.5) 
by itself does not possess a unique solution. Uniqueness is restored by noting that (2.7) 
must yield y ( L ) =  - 1 ,  and that this is true if 

½ e 2~(°) = ½ e 2~'(L) _ F-2 .  (2.8) 

Equation (2.8) is a necessary subsidiary condition, and the combined system (2.4), (2.5), 
(2.8) appears to possess a unique non-trivial solution. Note that (2.8) is a direct conse- 
quence of (2.1), and in effect guarantees that the pressure on both streamlines is the same. 

3. Numerical method 

Our major task is to approximate the integral (2.5), replacing it by a summation over, say, 
N discrete values of 0(4). In order to accomplish this, we need to partition the interval 
0 ~< ~ ~< L into N segments, the j t h  segment being ~j-i  ~< ~ ~< ~j- This partition must be 
chosen very carefully, since it must accommodate square-root singularities in 0 ( 0  at the 
ends, ~ = 0 and ~ = L, and a logarithmic singularity at ~ = 1. We therefore set 

1 - e -j~',  0 ~<j~< M -  1 

l + ( L - 1 )  e -<N-j~a, M<~j<~N 
(3.1) 

for some positive constants a, ft. This assigns M -  1 segments to the upper free surface 
0 ~< ~ < 1, and N - M to the lower 1 < ~ ~< L. The Mth  segment is special, in that it spans 
the singularity at ~ = 1 representing the ultimate free-falling jet. We choose the parameters 
a and fl so that this special segment is symmetric about ~ = 1, and of width 2c, i.e. 

c = e -~<M-1)2 = ( L  - 1) e -a(N-M)2, (3.2) 

where c is an input parameter. The smaller the value of c, the further does the partition of 
segments extend along the ultimate jet. 

Having fixed this partition, we can now discretize the problem in various ways, by local 
approximation to 0(~j) on each separate segment. We choose here the simplest such 
approximation, by setting 0 ( 4 ) =  ~ = constant on the j t h  segment. The special nonuni- 
form partition (3.1) is designed to "follow" variations in 0(~), so that this step-function 
approximation retains accuracy even near the singularities. Clearly, this fails as an 
approximation to 0(4) at j = M, since this special segment spans a singularity in which 
0(4) possesses a finite but sharp "spike", as is seen in Figure 2. Nevertheless, as a 
representation of the contribution of such a segment to the integral (2.5), the approxima- 
tion 0 = 0 M = constant is still valid, since this spike contributes negligibly to the integral. 
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Now if 0 ( f )  is so represented in step-function form, the integral (2.5) becomes (without 
further approximation) 

~'(~')= E '~r log ~ _ - ~ .  
j= l  

(3.3) 

All that remains is to substitute (3.3) directly into the boundary condition (2.4) and to 
force (2.4) to hold at a suitable set of values of ~. 

In practice, we do this at the N - 1 "pseudo  mid-points" of the i th interval, i :/: M, 
defined by setting j = i - 1 / 2  in (3.1). This would be inappropriate at i = M, since the 
mid-point  of that interval is the singular point ~" = 1. Instead, the Mth  equation is just the 
subsidiary condition (2.8), in which z(0) and ~'(L) are approximated by (3.3) evaluated at 
the pseudo mid-points of the segments j = 1, N respectively. Thus, we now have N 
non-linear algebraic equations in N unknowns 01, 02 , . . . ,  ON, and solve this system by 
Newton's  method on a VAX 11/780 computer. 

Generally, the program was started at a large value of F and with an initial empirical 
estimate for the 0j. After convergence is achieved at this F, the new/7 values are used as a 
starting guess for a smaller value of F, and so on. Most results were computed with 
N = 60, M = 30 and c = 10 -8, and convergence of Newton's  method at fixed N to at least 
six-figure accuracy was achieved in 5 or 6 iterations. The discretization error can then be 
reduced by increasing N, but the above values are sufficient to give results of three to 
four-figure accuracy. The only reason for using such a small value of c is to yield an 
adequate graph of the ultimate jet; a much larger value would suffice numerically. 

The x and y coordinates of the free surfaces are computed in a post-processing phase, 
using the same step-function approximation. That is, the integrals (2.6), (2.7) are ap- 
proximated by assuming that both 17 and ~- are constant over the j t h  interval. This works 
well for 0 < ~ < 1, for the upper free surface. To avoid having to integrate through the 
singularity at ~ = 1 when ~ > 1, we first compute the lower free-surface shape relative to 
the lower detachment point, then find the x-wise offset I of that point relative to the upper 
detachment point by integrating upstream. To do this, we use (2.6) to evaluate x(~) - 1 on 
the upper wall for ~'< 0, stopping when the flow is essentially uniform ( ~ -  - 4  or 

- -105) .  We then assume that the same x-value applies to the lower wall at the same 
choice of ~, e.g. at ~" - + 105. Now we integrate again along the lower wall for decreasing 
positive values of ~ until we reach the lower detachment point at ~ = L. 

4. Discussion of results 

Figure 2 shows a typical set of primary outputs from the converged Newton iteration 
process, namely results for 0(~) for various F values, at L = 2. Note that the spike 
0 = - ~ r / 2  at ~ = 1 is very sharp at all Froude numbers. When F = ~ ,  i.e. there is no 
gravity, the stream is undisturbed, and 17 = 0. As F decreases, and the jet is more 
influenced by gravity, it falls faster, and 0 takes more-negative values. 

The approach of the 0-values to zero at the ends of the interval, e.g. as ~ $ 0, is in 
general like ~1/2, but as F decreases, the fall is more and more rapid near ~ = 0, and 
eventually a minimum Froude number  F = F 0 is reached, at which commencement  with 
0(0) = 0 is impossible. For F values close to F 0, 0 is not monotone decreasing in 0 < ~ < 1, 
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Figure 2. Graph of 0(~') for various F, at L = 2. 

bu t  ins tead  takes first  a m i n i m u m  then a m a x i m u m  value;  this co r re sponds  to uppe r  free 
surface  profi les  with two inf lexion points .  As F ~ F 0, the m i n i m u m  value of  8 approaches  
- ~ r / 3 ,  and  occurs  closer and  closer  to ~ = 0. 

Because of  this r ap id  change  near  ~ = 0, it  is diff icult  to re ta in  good  accuracy  with 
above-desc r ibed  p r o g r a m  as F ~. F o. However ,  results  at  F = F o i tself  can be ob ta ined  to 
good  accuracy  by  a s imple  modi f i ca t ion  of  the program.  A t  F = F o we now d e m a n d  that  
0 - - ,  - ~ r / 3  as ~ ~ 0, and  enforce this s imply b y  set t ing O 1 = - ~ r / 3  in the  discret ized 
system. Hav ing  thus e l imina ted  one of  our  N unknowns,  we replace  it by  t rea t ing the 
F r o u d e  n u m b e r  F itself as an unknown.  The  converged N e w t o n  i te ra t ions  for this 
mod i f i ed  p r o g r a m  therefore  yield not  only  an app rop r i a t e  s t agna t ion-po in t  type  flow, bu t  
also explici t  and  accura te  es t imates  of  the m i n i m u m  F r o u d e  number  F 0. The  curve for 
F = F 0 = 0.882 in F igure  2 was c o m p u t e d  in this way. 

Since the value for  L is f ixed at  2 in F igure  2, each separa te  value of  F co r responds  to a 
d i f ferent  value of  the  phys ica l -p lane  offset  L However ,  by  repea t ing  the computa t ions  for 
a large range of  values of  L at  any  F,  we can achieve any des i red  value  of  L Figures  3, 4 
and  5 show the final f ree-surface profi les  for ! = 0.5, 0 and  - 0 . 5  respectively,  for  var ious  
F.  The  flow pa t t e rns  in F igure  3 are  typical  of  the overhang  s i tuat ion,  and,  as F decreases 
t oward  the m i n i m u m  value of F 0 = 0.737, the j e t  falls more  r ap id ly  under  gravity,  in a 
smoo th  and  m o n o t o n e  manner .  
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Figure 3. Overhang profile for various Froude numbers. 

The  results in Figure 4 for the zero-offset  case 1 = 0 are of  par t icular  interest, since they 
can represent  flow f rom a s traight-ended nozzle, or f rom a slot in a vertical wall. Here  the 
m i n i m u m  Froude  n u m b e r  is F 0 = 0.551. As F decreases, the free jet  falls under  gravity as 
is expected,  with the curvature  of  the upper  free surface increasing. Close to the s tagnat ion 
value of  F = 0.551, the flow still detaches itself horizontal ly and smooth ly  f rom the top 

X N N \ \ N \ \ \ ~  

F=I.414 

Figure 4. Slot profile for various Froude numbers. 
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F=3.162  

F= 1.000 F=1.414 
Figure 5. Underhang profile for various Froude numbers. 

wall. However, there is a slight "waviness" in the upper free surface, and this corresponds 
to the two inflexion points discussed above. Physically, when F is close to F 0' the water 
particles near the upper free surface initially accelerate rapidly down on a 60 ° slope from 
the stagnation point, but soon " re-bound"  on meeting those particles near the lower free 
surface, which are still being influenced by the lower wall. This tendency to re-bound is 

F o = 0.517 0.551 0.737 0..894 1.998 

Figure 6. Stagnation-point profiles for various Froude numbers, each corresponding to a different overhang. 
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\ \ \ \ \ \ \ \ \ \ ' t  

Figure 7. Comparison of I = -2.711 result (solid curve) with Smith and Abd-el-Malek's (crosses) solution to the 
waterfall problem at F ~ 1. 

quickly  swamped  by  the fall under  gravity,  and  the second change  in curva ture  takes 
place,  af ter  which the j e t  falls more  rap id ly  and  becomes  more  thin the lower  is F. The  
r e -bound  p h e n o m e n o n  is even more  a p p a r e n t  in the unde rhang  case of  F igure  5, since 
then the lower  wall  i tself  can p l ay  a more  di rec t  role as a bar r ie r  to the ini t ia l  fall. 

I f  one a t tempts ,  at  any  given overhang  l, to reduce  F be low F 0, de t achmen t  will in 
p rac t ice  s imply  move  back  a long the uppe r  wall. Tha t  is, the value of  1 will lessen in such 
a way  as to ma in ta in  the F r o u d e  n u m b e r  at  the value F = Fo(l  ) co r re spond ing  to the new 
value  of  1. Thus  the l imit ing flows have an in teres t ing  a l te rna t ive  in t e rp re t a t ion  as the 
flows that  would  ac tua l ly  be achieved at  any  F r o u d e  n u m b e r  F,  when there is an upper  
wall  that  ex tends  a rb i t ra r i ly  far to the right,  bu t  with s t agna t ion -po in t  de t achmen t  at x = 1 
f rom that  uppe r  wall,  where  l is de t e rmined  b y  solving F---  Fo(l  ). Figure  6 shows a family  
of  such flows. 

F ina l ly ,  let  us cons ider  an a p p r o a c h  to the true waterfa l l  case, in which there is no 
u p p e r  wall.  This  can  be  achieved by  le t t ing 1 ~ - o o  in the p resen t  formula t ion .  In  
pract ice ,  this means  that  we mus t  run  the exist ing p r o g r a m  for L values very close to 
unity,  which involves some loss of  precision.  However ,  results  were ob t a ined  for  1 = - 2.711 
that  are a lmos t  ind i s t ingu ishab le  f rom those ob t a ined  b y  Smith  and  A b d - e l - M a l e k  [4], as 
is shown in F igure  7 for  the case when F = 1. Thus,  the presence of  an uppe r  wall  ending  
at abou t  3 slot widths  ups t r eam has an ins ignif icant  effect on the resul t ing waterfal l .  
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